Oil Analysis and its Role In Equipment Reliability
Selecting the proper lubricant, along with careful maintenance of that lubricant, is essential to ensure adequate protection to any machine. Proper lubrication is defined as a correct amount of the correct lubricant at the correct time.
Maintaining a lubricant means ensuring that it has the correct viscosity and the necessary additives for the application. Steps must be taken to keep the lubricant clean and serviceable. Oil analysis is the most effective way to prolong the useful life of lubricants, while maintaining maximum protection of equipment.
Oil analysis tests reveal information that can be broken down into three categories:
- Lubricant condition: the assessment of the lubricant condition reveals whether the system fluid is healthy and fit for further service, or is ready for a change.
- Contaminants: increased contaminants from the surrounding environment in the form of dirt, water and process contamination are the leading cause of machine degradation and failure. Increased contamination indicates that it is time to take action in order to save the oil and avoid unnecessary machine wear.
- Machine wear: an unhealthy machine generates wear particles at an exponential rate. The detection and analysis of these particles assist in making critical maintenance decisions. Machine failure due to worn out components can be avoided. It is important to remember that healthy and clean oil leads to the minimization of machine wear.
Lubricant condition is monitored with tests that quantify the physical properties of the oil to ensure that it is serviceable. Metals and debris associated with machine wear are measured to monitor equipment health. Some tests target specific contaminants that are commonly found in oils. It is imperative to select the proper blend of tests to monitor the machine’s lubricant condition, wear debris and contaminants in order to meet the goals of successful oil analysis.